If it's not what You are looking for type in the equation solver your own equation and let us solve it.
250-16t^2=0
a = -16; b = 0; c = +250;
Δ = b2-4ac
Δ = 02-4·(-16)·250
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*-16}=\frac{0-40\sqrt{10}}{-32} =-\frac{40\sqrt{10}}{-32} =-\frac{5\sqrt{10}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*-16}=\frac{0+40\sqrt{10}}{-32} =\frac{40\sqrt{10}}{-32} =\frac{5\sqrt{10}}{-4} $
| 9b+2(-10b-2)=-10-9b-10 | | 8x-6+84+59=180 | | 2x=10+x1 | | 65+75+x1=80 | | 10x-2+17+5x=180 | | y=2500(.963)^5 | | 6x+10=x=2+x=180 | | 20/3=-10/9x | | -11=3/4x+1/7 | | 5x-8.4=29x+9.72 | | 13x-4=7x+2x-9 | | -3=5x=17 | | 1/4x3=12 | | 7x-7+48=180 | | (10x+2)-(x+0.2)=0 | | 3(6x+3)=36 | | 4a+6/5=3a | | 3x-4=2x+x+1 | | 20x+9=21x+3 | | 8+7x=−6 | | 450=7x-219 | | c(15c-30)=0 | | 10x+2=x+0.2 | | 31x-14=13x+67 | | F(-6)=-1/3x+13 | | -4((1.75+x)=18 | | −43 w=6 | | 8x^2-2x^2=300^2 | | 19x+15=24+10x | | 2x+2(-x+4)=7 | | -9=n-14 | | 3(z−8)−–4=7 |